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General Conceptual Model

• Geometry “filters” estuarine drivers (tides, etc) 
• Complex geometry begets more variable process 

response.
• Suisun Marsh was historically more complex 

(geometry and aquatic-terrestrial connectivity)
• Native plants and animals figured out variability.
• Restoration goal: restore “geometric” complexity.
• How? 

Find intertidal elevations and let tide in!
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•• Similar tidal prismSimilar tidal prism
•• Similar source waterSimilar source water
•• Different adjacent land useDifferent adjacent land use
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Data is flow, temperature, chlorophyll,Data is flow, temperature, chlorophyll,
salt and DO flux at these locations:salt and DO flux at these locations:



Comparing Hydrodynamics
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Hydrodynamics Summary

• Tidal flow, net flow, and water flux depend 
on geometry.

• Flow on tidal and spring-neap timescale is 
more variable at First Mallard Slough.



Comparing Temperature
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Temperature Summary

• Temperature variability due to diel timing of tides.

• Both sloughs generate temperature extremes 
high and low. First Mallard does it more.

• Both sloughs generally cool during spring tides, 
more so at First Mallard.

• Magnitude of heating/cooling (and magnitude of 
temperature gradients) affected by geometry.



Comparing Variability of other 
Constituent Fluxes

•• ChlorophyllChlorophyll
•• Salt Salt 
•• Dissolved OxygenDissolved Oxygen

Same YSame Y--Axis ScaleAxis Scale
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at Brownat Brown’’s Islands Island
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all plots tend to show more wiggles (aliasing visall plots tend to show more wiggles (aliasing vis--àà--vis tidal timescale)vis tidal timescale)
in Sheldrake Sloughin Sheldrake Slough

seemingly on the tidal timescale even though this is filtered daseemingly on the tidal timescale even though this is filtered datata
which suggests existence of a forcing not at the tidal timescalewhich suggests existence of a forcing not at the tidal timescale..
could this be a diel forcing due to covert operations on a dailycould this be a diel forcing due to covert operations on a daily basis ?basis ?
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Summary

• First Mallard tightly coupled to spring-neap cycle. 
Sheldrake is not. 

• Temperature variability due to diel timing of tides. 
Geometry determines magnitude of variability.

• Chlorophyll flux by opposite transport processes.
• Sloughs generate temperature extremes both high 

and low. First Mallard does it more.
• Physical, chemical, and biological signals 

(gradients) are all more variable at First Mallard.



General Conceptual Model

• Geometry “filters” estuarine drivers (tides, 
river input) 

• Complex geometry begets more variable 
process response.

• Native plants and animals figured out 
variability.

• Let’s put intertidal elevation landscapes on 
a trajectory to complex geometry by letting 
the tides in.
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